30th Annual Cancer Progress Conference

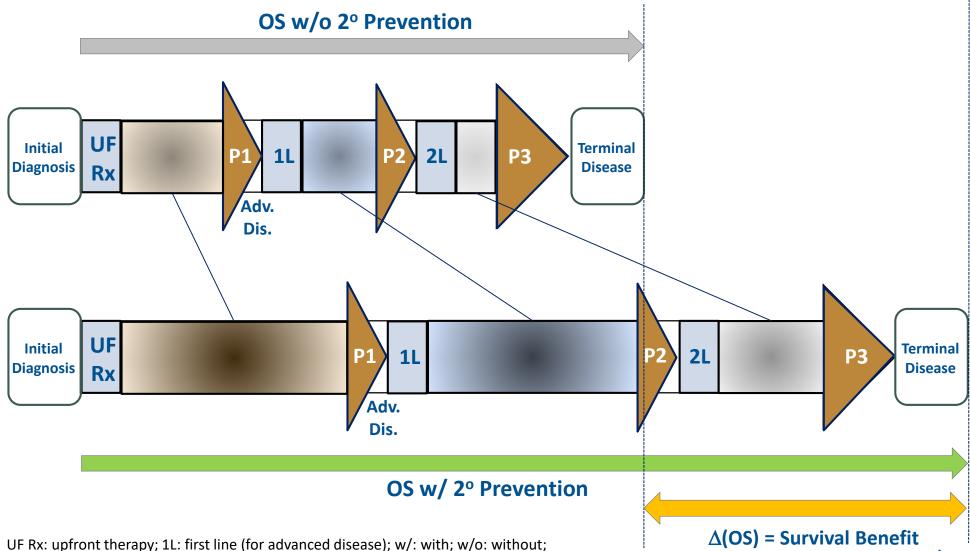
Discussion Points on Immuno-Prevention

Nicholas J. Sarlis, MD, PhD Chief Medical Officer SELLAS Life Sciences Group, Inc. – New York, NY

7 May 2019

LEGAL NOTICE

- This presentation was prepared by Dr. Nicholas Sarlis in his personal capacity.
- The opinions expressed in this presentation and associated panel discussion are the presenter's/discussant's own and do not reflect the view of Sellas Life Sciences Group, Inc. (SELLAS)
- No confidential/ non-public data have been used in this presentation.


COI DISCLOSURE

- Dr. Sarlis is an Officer of SELLAS and holds equity in the company.
- *He also holds shares of Sanofi and Incyte Corp.*

SECONDARY PREVENTION IN CANCER

- Implementation of therapeutic modalities in the maintenance/ consolidation or adjuvant setting to prevent or delay the recurrence/relapse of disease after successful prior debulking
 - This could be in the context of local/regional and/or distantly metastatic disease; however, it is typically for the latter
 - Monotherapy vs. combination Rx
 - Can be implemented after 1st, 2nd, 3rd, ...nth line of therapy (depending on the tumor type and degree of unmet medical need)
 - Potential for prolonged periods of administration (if effective)
- Ideally should be associated with:
 - low/manageable toxicity burden and
 - lack of appreciable tumor 'escape' from its therapeutic effect

2L: second line; P1,2,3: progression episodes 1,2,3; Adv. Dis.: advanced disease

SECONDARY PREVENTION IN CANCER

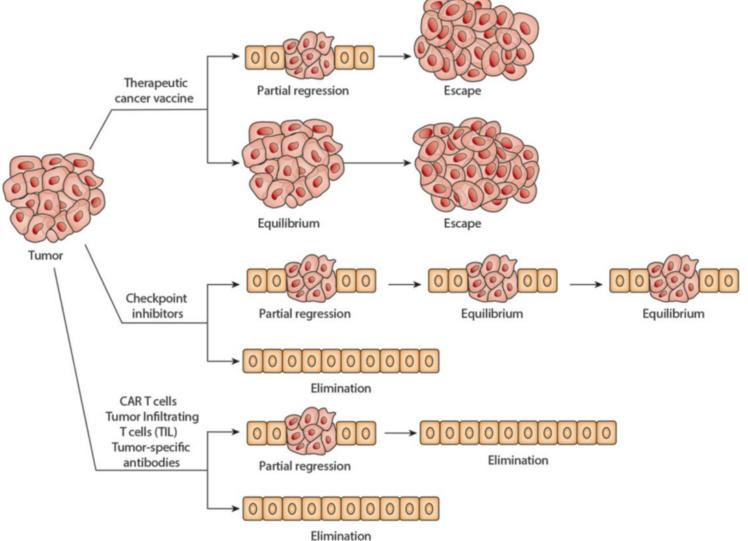
Types of Agents Used:

- Chemotherapy
 - numerous regimens in lymphomas, Stage 3 NSCLC/CRC, etc.
- Radiobiologics
 - 131-I (radioiodine) in thyroid Ca
- Targeted biotherapy
 - VEGF inhibitors in mesothelioma; PARP inhibitors in ovarian Ca; EGFR inhibitors (SCCHN); Endocrine therapy (Prostate/BrCa); assorted TKIs, etc.
 - Novel pathways: Tumor metabolic reprogramming (OxPhos inh); microbiome alteration, etc.
- Immuno-Oncology (IO) Agents & Tumor Microenvironment (TME) Modulators
 - Interferon & Cytokines (renal Ca, melanoma)
 - Stem Cell Transplant (autologous in myeloma, allogeneic in AML, etc.)
 - Immune synapse modulators (Checkpoint blockade, etc. in melanoma and other tumor types) and other IO agents (e.g., bispecific antibodies, TILs, CAR T-cells, etc.)
 - Peritumoral inflammation modulators (JAK inh, IDO/TDO inh, etc.)
 - Cancer therapeutic vaccines

PARADIGMS OF USAGE OF CANCER VACCINES

• AS MONOTHERAPY IN THE MAINTENANCE/ADJUVANT SETTING

- IN COMBINATION WITH OTHER THERAPIES (MAINLY IMMUNOTHERAPIES) TO TREAT MEASURABLE/ MACROSCOPIC ADVANCED DISEASE
 - Clinical trials studying the effect of the combination of cancer vaccines plus immuno-oncology (IO) agents vs. IO agents alone
 - Strong preclinical/ immunobiological rationale (in most cases)


TYPES OF CANCER VACCINES

- Antigen vaccines
 - Protein/ Peptide vaccines
 - Vaccines against other types of molecules (e.g., glycolipids)
- Whole cell vaccines
 - Autologous
 - Allogeneic
- Dendritic cell (DC) vaccines
 - incl. ex vivo modified DC vaccines
- DNA vaccines
- Anti-idiotypic vaccines

PEPTIDE VACCINES – CHALLENGES & OPPORTUNITIES

- Ability to 'address' a large variety of antigenic targets (incl. intranuclear proteins)
- Valency/ "Spectrum"
 - "Wide-spectrum" vaccines (multivalent):
 - E.g.: Galinpepimut-S (anti-WT1) tetravalent → wide variety of tumor types express the target antigen
 - "Narrow-spectrum" vaccines:
 - E.g.: Nelipepimut-S (anti-HER2) monovalent, E39/J69 (anti-Folate binding protein) bivalent
- Heteroclitic technology
 - By design mutated residues (cross-reactive with native fragment)
 - Improved antigenicity/ immunogenicity
 - Decreased tolerance
- "Off-the-shelf", relatively low manufacturing costs; low toxicity burden (no 'off-target' effects)
- Need for prestimulation with immune adjuvant (GM-CSF)
- Ideally, need to stimulate both CD8+ and CD4+ T-cells
- "Epitope spreading" is a highly desirable attribute and a biomarker of immunologically mediated cancer cell death
- Ideally, ability to be applied in a global scale (across HLA types; MHC Class I and II binding)
- Opportunity for inoculation boosters (~q.3-6 months) over long time periods

CANCER VACCINES: MECHANISM OF ACTION & EXPECTED OUTCOMES

